
 

Multiprocessors and Thread-Level 
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Shift to Multiprocessors 
“… today’s processors … are nearing an impasse as technologies approach the speed of 

light..”  

David Mitchell, The Transputer: The Time Is Now (1989) 

 

•  “We are dedicating all of our future product development to multicore designs. … This 
is a sea change in computing”  

Paul Otellini, President, Intel (2005)  

 

• All microprocessor companies switch to MP (2X CPUs / 2 yrs) 
 

Manufacturer/Year AMD/’05 Intel/’06 IBM/’04 Sun/’05 

Processors/chip 2 2 2 8 

Threads/Processor 1 2 2 4 

Threads/chip 2 4 4 32 
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Other Factors  Multiprocessors 

• Growth in data-intensive applications 
– Data bases, file servers, …  

• Growing interest in servers, server perf. 

• Increasing desktop perf. less important  
– Outside of graphics 

• Improved understanding in how to use 
multiprocessors effectively  
– Especially server where significant natural TLP 

• Advantage of leveraging design investment by 
replication  
– Rather than unique design 
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Flynn’s Taxonomy 

• Flynn classified by data and control streams in 1966 

 

 

 

 

 

 

• SIMD  Data Level Parallelism 

• MIMD  Thread Level Parallelism 

Single Instruction Single 
Data (SISD) 

(Uniprocessor) 

Single Instruction Multiple 
Data SIMD 

(single PC: Vector, CM-2) 

Multiple Instruction Single 
Data (MISD) 

(????) 

Multiple Instruction Multiple 
Data MIMD 

(Clusters, SMP servers) 

M.J. Flynn, "Very High-Speed Computers",  

Proc. of the IEEE, V 54, 1900-1909, Dec. 1966.  
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Back to Basics 

• “A parallel computer is a collection of processing 
elements that cooperate and communicate to solve 
large problems fast.” 

• Parallel Architecture  = Computer Architecture +         
Communication Architecture 

• 2 classes of multiprocessors WRT memory: 

1. Centralized Memory Multiprocessor  
• < few dozen processor chips (and < 100 cores) in 2006 

• Small enough to share single, centralized memory 

2. Physically Distributed-Memory multiprocessor 
• Larger number chips and cores than 1. 

• BW demands  Memory distributed among processors 
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Centralized Memory  
Multiprocessor  

• Also called symmetric multiprocessors (SMPs)  because single 
main memory has a symmetric relationship to all processors 

• Large caches  single memory can satisfy memory demands of 
small number of processors 

• Can scale to a few dozen processors by using a switch and by using 
many memory banks 

• Although scaling beyond that is technically conceivable, it 
becomes less attractive as the number of processors sharing 
centralized memory increases 
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Centralized Shared-Memory 
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Distributed Memory Multiprocessors 

Processor 

& Caches 

Memory I/O 

Processor 

& Caches 

Memory I/O 

Processor 

& Caches 

Memory I/O 

Processor 

& Caches 

Memory I/O 

Interconnection network 



10 

Distributed Memory 
Multiprocessor  

• Pro: Cost-effective way to scale memory bandwidth  

• If most accesses are to local memory 

• Pro: Reduces latency of local memory accesses 

• Con:  Communicating data between processors more 
complex 

• Con: Must change software to take advantage of 
increased memory BW 
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2 Models for Communication and 
Memory Architecture 

1. Communication occurs by explicitly passing 
messages among the processors:  
message-passing multiprocessors 

2. Communication occurs through a shared 
address space (via loads and stores):  
shared memory multiprocessors either 
• UMA (Uniform Memory Access time) for shared address, 

centralized memory MP 

• NUMA (Non Uniform Memory Access time multiprocessor) 
for shared address, distributed memory MP 
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Challenges of Parallel Processing 

• First challenge is % of program inherently sequential 

• Suppose 80X speedup from 100 processors. What 
fraction of original program can be sequential? 

a. 10% 

b. 5% 

c. 1% 

d. <1% 
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Challenges of Parallel Processing 

1. Application parallelism  primarily via new 
algorithms that have better parallel performance 

2. Long remote latency impact  both by architect 
and by the programmer  

• For example, reduce frequency of remote accesses 
either by  
– Caching shared data (HW)  
– Restructuring the data layout to make more accesses local 

(SW) 
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Symmetric Shared-Memory 
Architectures 

• From multiple boards on a shared bus to multiple 
processors inside a single chip 

• Caches both 

– Private data are used by a single processor 

– Shared data are used by multiple processors 

• Caching shared data  
 reduces latency to shared data, memory bandwidth 
for shared data, and interconnect bandwidth 
 cache coherence problem 
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Example Cache Coherence Problem 

– Processors see different values for u after event 3 

– With write back caches, value written back to memory 
depends on which cache flushes or writes back value 
when 

– Unacceptable for programming, and its frequent! 

I/O devices 

Memory 

P 1 

$ $ $ 

P 2 P 3 

5 

u  = ? 
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Defining Coherent Memory System 
1. Preserve Program Order: A read by processor P to location X 

that follows a write by P to X, with no writes of X by another 
processor occurring between the write and the read by P, 
always returns the value written by P  

2. Coherent view of memory: Read by a processor to location X 
that follows a write by another processor to X returns the 
written value if the read and write are sufficiently separated in 
time and no other writes to X occur between the two accesses  

3. Write serialization: 2 writes to same location by any 2 
processors are seen in the same order by all processors 
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Basic Schemes for Enforcing Coherence 

• Program on multiple processors will normally have 
copies of the same data in several caches 

• Rather than trying to avoid sharing in SW,  
SMPs use a HW protocol to maintain coherent caches 
– Migration and Replication key to performance of shared 

data 

• Migration - data can be moved to a local cache and 
used there in a transparent fashion  
– Reduces both latency to access shared data that is allocated 

remotely and bandwidth demand on the shared memory 

• Replication – for shared data being simultaneously 
read, since caches make a copy of data in local cache 
– Reduces both latency of access and contention for read 

shared data 
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2 Classes of Cache Coherence Protocols 

1. Directory based — Sharing status of a block of 
physical memory is kept in just one location, 
the directory 

2. Snooping — Every cache with a copy of data 
also has a copy of sharing status of block, but 
no centralized state is kept 
• All caches are accessible via some broadcast medium (a bus or switch)  

• All cache controllers monitor or snoop on the medium to determine 
whether or not they have a copy of a block that is requested on a bus 
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Snoopy Cache-Coherence Protocols 

• Cache Controller “snoops” all transactions on 
the shared medium (bus or switch) 
– relevant transaction if for a block it contains 
– take action to ensure coherence 

• invalidate, update, or supply value 

• Either get exclusive access before write via 
write invalidate or update all copies on write 

State 

Address 

Data 

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction
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Locate up-to-date copy of data 

• Write-through: get up-to-date copy from memory 
– Write through simpler if enough memory BW 

• Write-back harder 
– Most recent copy can be in a cache 

• Can use same snooping mechanism 
1. Snoop every address placed on the bus 
2. If a processor has dirty copy of requested cache block, it provides it 

in response to a read request and aborts the memory access 
– Complexity from retrieving cache block from a processor cache, which can take 

longer than retrieving it from memory  

• Write-back needs lower memory bandwidth  
 Support larger numbers of faster processors  
 Most multiprocessors use write-back 
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Example: Write-thru Invalidate 

• Must invalidate before step 3 

• Write update uses more broadcast medium BW 
 all recent MPUs use write invalidate 

I/O devices 
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Example Write Back  
Snoopy Protocol 

• Invalidation protocol, write-back cache 
– Snoops every address on bus 

– If it has a dirty copy of requested block, provides that block in response to the read request and 
aborts the memory access 

• Each memory block is in one state: 
– Clean in all caches and up-to-date in memory (Shared) 

– OR Dirty in exactly one cache (Exclusive) 

– OR Not in any caches 

• Each cache block is in one state (track these): 
– Shared : block can be read 

– OR Exclusive : cache has only copy, its writeable, and dirty 

– OR Invalid : block contains no data (in uniprocessor cache too) 

• Read misses: cause all caches to snoop bus 

• Writes to clean blocks are treated as misses 
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Coherency Misses 
1. True sharing misses arise from the 

communication of data through the cache 
coherence mechanism 
• Invalidates due to 1st write to shared block 
• Reads by another CPU of modified block in different 

cache 
• Miss would still occur if block size were 1 word 

2. False sharing misses when a block is invalidated 
because some word in the block, other than the 
one being read, is written into 
• Invalidation does not cause a new value to be 

communicated, but only causes an extra cache miss 
• Block is shared, but no word in block is actually 

shared 
  miss would not occur if block size were 1 word 
 



26 

Directories 

•  Every memory block has associated directory 
information 

– keeps track of copies of cached blocks and their states 

– on a miss, find directory entry, look it up, and 
communicate only with the nodes that have copies if 
necessary 
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Synchronization 

• Why Synchronize? Need to know when it is safe 
for different processes to use shared data 

• Issues for Synchronization: 

– Uninterruptable instruction to fetch and update 
memory (atomic operation); 

– User level synchronization operation using this 
primitive; 

– For large scale MPs, synchronization can be a 
bottleneck; techniques to reduce contention and 
latency of synchronization 



Multithreading on Multicore 

• Basic idea: Processor resources are expensive and 
should not be left idle 

• Long memory latency to memory on cache miss? 
• Hardware switches threads to bring in other 

useful work while waiting for cache miss 
• Cost of thread context switch must be much less 

than cache miss latency 
• Put in redundant hardware so don’t have to save 

context on every thread switch: 
– PC, Registers? 

• Attractive for apps with abundant TLP 
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