Multiprocessors and Thread-Level

Parallelism

Uniprocessor Performance (SPECint)

10000 3X

"7

??%lyea

=

10004 A

100

Performance (vs. VAX-11/780)

BN
(@)

1 &— | | | | | | | | | | | |
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Shift to Multiprocessors

“... today’s processors ... are nearing an impasse as technologies approach tne speea ot
light..”
David Mitchell, The Transputer: The Time Is Now (1989)

* “We are dedicating all of our future product development to multicore designs. ... This

is a sea change in computing”
Paul Otellini, President, Intel (2005)

* All microprocessor companies switch to MP (2X CPUs / 2 yrs)

Manufacturer/Year AMD/’05 Intel/’06 IBM/’04 Sun/’05
Processors/chip 2 2 ? 8
Threads/Processor 1 2 2 4
Threads/chip 2 4 4 32

Other Factors = Multiprocessors

Growth in data-intensive applications

— Data bases, file servers, ...

Growing interest in servers, server perf.

Increasing desktop perf. less important

— Outside of graphics

Improved understanding in how to use
multiprocessors effectively

— Especially server where significant natural TLP
Advantage of leveraging design investment by
replication

— Rather than unique design

M.J. Flynn, "Very High-Speed Computers”,
Proc. of the IEEE, V 54, 1900-1909, Dec. 1966.

Flynn’s Taxonomy

* Flynn classified by data and control streams in 1966

Single Instruction Single
Data (SISD)

(Uniprocessor)

Single Instruction Multiple
Data SIMD

(single PC: Vector, CM-2)

Multiple Instruction Single
Data (MISD)

(2227)

Multiple Instruction Multiple
Data MIMD

(Clusters, SMP servers)

e SIMD = Data Level Parallelism
e MIMD = Thread Level Parallelism

Back to Basics

“A parallel computer is a collection of processing
elements that cooperate and communicate to solve
large problems fast.”

Parallel Architecture = Computer Architecture +
Communication Architecture

2 classes of multiprocessors WRT memory:
. Centralized Memory Multiprocessor

e < few dozen processor chips (and < 100 cores) in 2006
e Small enough to share single, centralized memory

. Physically Distributed-Memory multiprocessor

e Larger number chips and cores than 1.
e BW demands = Memory distributed among processors

Centralized Memory
Multiprocessor

Also called symmetric multiprocessors (SMPs) because single
main memory has a symmetric relationship to all processors

Large caches = single memory can satisfy memory demands of
small number of processors

Can scale to a few dozen processors by using a switch and by using
many memory banks

Although scaling beyond that is technically conceivable, it
becomes less attractive as the number of processors sharing
centralized memory increases

Centralized Shared-Memory

Processor

Caches

Processor

Processor

Caches

Processor

Caches

Caches

Main Memory

I/O System

Distributed Memory Multiprocessors

Processor Processor Processor Processor
& Caches & Caches & Caches & Caches
Memory /O Memory /O Memory /O Memory 1/O

Interconnection network

Distributed Memory
Multiprocessor

Pro: Cost-effective way to scale memory bandwidth
e |f most accesses are to local memory
Pro: Reduces latency of local memory accesses

Con: Communicating data between processors more
complex

Con: Must change software to take advantage of
increased memory BW

2 Models for Communication and
Memory Architecture
1. Communication occurs by explicitly passing

messages among the processors:
message-passing multiprocessors

2. Communication occurs through a shared
address space (via loads and stores):
shared memory multiprocessors either

e UMA (Uniform Memory Access time) for shared address,
centralized memory MP

e NUMA (Non Uniform Memory Access time multiprocessor)
for shared address, distributed memory MP

Challenges of Parallel Processing

* First challenge is % of program inherently sequential

e Suppose 80X speedup from 100 processors. What
fraction of original program can be sequential?

a. 10%
b.5%
c. 1%
d.<1%

Amdahl’s Law

: : : Fraction
ExTime,., = ExTime, 4 x[(l— Fraction, nanced)+ enhanced

Speec;h"r'"enhcmced

ExTime, 1
sPeed"'pover'cull = d

ExTime,,, Fraction . pqnced

(1- Fraction ,panced) +
speedup¢—:nhcu'|ced

Best you could ever hope to do:

1
- (1 - Frac.ﬁonenhanced)

B N - N e

Speedupi'naximum

Challenges of Parallel Processing

1. Application parallelism = primarily via new
algorithms that have better parallel performance

2. Long remote latency impact = both by architect
and by the programmer

 For example, reduce frequency of remote accesses
either by
— Caching shared data (HW)

— Restructuring the data layout to make more accesses local
(SW)

Symmetric Shared-Memory
Architectures

* From multiple boards on a shared bus to multiple
processors inside a single chip

* Caches both
— Private data are used by a single processor
— Shared data are used by multiple processors

e Caching shared data
= reduces latency to shared data, memory bandwidth
for shared data, and interconnect bandwidth

—> cache coherence problem

Example Cache Coherence Problem

<::> <::> I/O devices
N U5

Memory

— Processors see different values for u after event 3

— With write back caches, value written back to memory
depends on which cache flushes or writes back value
when

— Unacceptable for programming, and its frequent!

Defining Coherent Memory System

1. Preserve Program Order: A read by processor P to location X
that follows a write by P to X, with no writes of X by another
processor occurring between the write and the read by P,
always returns the value written by P

2. Coherent view of memory: Read by a processor to location X
that follows a write by another processor to X returns the
written value if the read and write are sufficiently separated in
time and no other writes to X occur between the two accesses

3. Write serialization: 2 writes to same location by any 2
processors are seen in the same order by all processors

Basic Schemes for Enforcing Coherence

Program on multiple processors will normally have
copies of the same data in several caches

Rather than trying to avoid sharing in SW,
SMPs use a HW protocol to maintain coherent caches

— Migration and Replication key to performance of shared
data

Migration - data can be moved to a local cache and
used there in a transparent fashion

— Reduces both latency to access shared data that is allocated
remotely and bandwidth demand on the shared memory

Replication — for shared data being simultaneously
read, since caches make a copy of data in local cache

— Reduces both latency of access and contention for read
shared data

2 Classes of Cache Coherence Protocols

1. Directory based — Sharing status of a block of
physical memory is kept in just one location,
the directory

2. Snooping — Every cache with a copy of data
also has a copy of sharing status of block, but
no centralized state is kept

e All caches are accessible via some broadcast medium (a bus or switch)

e All cache controllers monitor or snoop on the medium to determine
whether or not they have a copy of a block that is requested on a bus

Snoopy Cache-Coherence Protocols

State

// Address ° Bus snoo b
$

/ Cache-memory
Mermn ‘ /O devices transaction

e Cache Controller “snoops” all transactions on
the shared medium (bus or switch)
— relevant transaction if for a block it contains
— take action to ensure coherence
* invalidate, update, or supply value

* Either get exclusive access before write via
write invalidate or update all copies on write

Locate up-to-date copy of data

Write-through: get up-to-date copy from memory
— Write through simpler if enough memory BW

Write-back harder
— Most recent copy can be in a cache

Can use same snooping mechanism

1. Snoop every address placed on the bus

2. If a processor has dirty copy of requested cache block, it provides it
in response to a read request and aborts the memory access

— Complexity from retrieving cache block from a processor cache, which can take
longer than retrieving it from memory

Write-back needs lower memory bandwidth
—> Support larger numbers of faster processors
—> Most multiprocessors use write-back

Example: Write-thru Invalidate

@ I/O devices
e

 Must invalidate before step 3

* Write update uses more broadcast medium BW
= all recent MPUs use write invalidate

Example Write Back
Snoopy Protocol

Invalidation protocol, write-back cache
— Snoops every address on bus

— If it has a dirty copy of requested block, provides that block in response to the read request and
aborts the memory access

Each memory block is in one state:
— Cleanin all caches and up-to-date in memory (Shared)
— OR Dirty in exactly one cache (Exclusive)
— OR Not in any caches
Each cache block is in one state (track these):
— Shared : block can be read
— OR Exclusive : cache has only copy, its writeable, and dirty
— ORInvalid : block contains no data (in uniprocessor cache too)

Read misses: cause all caches to snoop bus
Writes to clean blocks are treated as misses

Coherency Misses

1. True sharing misses arise from the
communication of data through the cache
coherence mechanism

e |nvalidates due to 15t write to shared block

e Reads by another CPU of modified block in different
cache

e Miss would still occur if block size were 1 word

2. False sharing misses when a block is invalidated
because some word in the block, other than the
one being read, is written into

e |nvalidation does not cause a new value to be
communicated, but only causes an extra cache miss

e Block is shared, but no word in block is actually
shared

— miss would not occur if block size were 1 word

Directories

 Every memory block has associated directory
information
— keeps track of copies of cached blocks and their states

— on a miss, find directory entry, look it up, and
communicate only with the nodes that have copies if
necessary

Synchronization

 Why Synchronize? Need to know when it is safe
for different processes to use shared data

* |ssues for Synchronization:

— Uninterruptable instruction to fetch and update
memory (atomic operation);

— User level synchronization operation using this
primitive;
— For large scale MPs, synchronization can be a

bottleneck; techniques to reduce contention and
latency of synchronization

Multithreading on Multicore

Basic idea: Processor resources are expensive and
should not be left idle

Long memory latency to memory on cache miss?

Hardware switches threads to bring in other
useful work while waiting for cache miss

Cost of thread context switch must be much less
than cache miss latency

Put in redundant hardware so don’t have to save
context on every thread switch:

— PC, Registers?
Attractive for apps with abundant TLP

