

Multiprocessors and Thread-Level

Parallelism

2

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e

rf
o

rm
a

n
c
e

 (
v
s
.

V
A

X
-1

1
/7

8
0

)

25%/year

52%/year

??%/year

Uniprocessor Performance (SPECint)

3X

3

Shift to Multiprocessors
“… today’s processors … are nearing an impasse as technologies approach the speed of

light..”

David Mitchell, The Transputer: The Time Is Now (1989)

• “We are dedicating all of our future product development to multicore designs. … This
is a sea change in computing”

Paul Otellini, President, Intel (2005)

• All microprocessor companies switch to MP (2X CPUs / 2 yrs)

Manufacturer/Year AMD/’05 Intel/’06 IBM/’04 Sun/’05

Processors/chip 2 2 2 8

Threads/Processor 1 2 2 4

Threads/chip 2 4 4 32

4

Other Factors  Multiprocessors

• Growth in data-intensive applications
– Data bases, file servers, …

• Growing interest in servers, server perf.

• Increasing desktop perf. less important
– Outside of graphics

• Improved understanding in how to use
multiprocessors effectively
– Especially server where significant natural TLP

• Advantage of leveraging design investment by
replication
– Rather than unique design

5

Flynn’s Taxonomy

• Flynn classified by data and control streams in 1966

• SIMD  Data Level Parallelism

• MIMD  Thread Level Parallelism

Single Instruction Single
Data (SISD)

(Uniprocessor)

Single Instruction Multiple
Data SIMD

(single PC: Vector, CM-2)

Multiple Instruction Single
Data (MISD)

(????)

Multiple Instruction Multiple
Data MIMD

(Clusters, SMP servers)

M.J. Flynn, "Very High-Speed Computers",

Proc. of the IEEE, V 54, 1900-1909, Dec. 1966.

6

Back to Basics

• “A parallel computer is a collection of processing
elements that cooperate and communicate to solve
large problems fast.”

• Parallel Architecture = Computer Architecture +
Communication Architecture

• 2 classes of multiprocessors WRT memory:

1. Centralized Memory Multiprocessor
• < few dozen processor chips (and < 100 cores) in 2006

• Small enough to share single, centralized memory

2. Physically Distributed-Memory multiprocessor
• Larger number chips and cores than 1.

• BW demands  Memory distributed among processors

7

Centralized Memory
Multiprocessor

• Also called symmetric multiprocessors (SMPs) because single
main memory has a symmetric relationship to all processors

• Large caches  single memory can satisfy memory demands of
small number of processors

• Can scale to a few dozen processors by using a switch and by using
many memory banks

• Although scaling beyond that is technically conceivable, it
becomes less attractive as the number of processors sharing
centralized memory increases

8

Centralized Shared-Memory

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

9

Distributed Memory Multiprocessors

Processor

& Caches

Memory I/O

Processor

& Caches

Memory I/O

Processor

& Caches

Memory I/O

Processor

& Caches

Memory I/O

Interconnection network

10

Distributed Memory
Multiprocessor

• Pro: Cost-effective way to scale memory bandwidth

• If most accesses are to local memory

• Pro: Reduces latency of local memory accesses

• Con: Communicating data between processors more
complex

• Con: Must change software to take advantage of
increased memory BW

11

2 Models for Communication and
Memory Architecture

1. Communication occurs by explicitly passing
messages among the processors:
message-passing multiprocessors

2. Communication occurs through a shared
address space (via loads and stores):
shared memory multiprocessors either
• UMA (Uniform Memory Access time) for shared address,

centralized memory MP

• NUMA (Non Uniform Memory Access time multiprocessor)
for shared address, distributed memory MP

12

Challenges of Parallel Processing

• First challenge is % of program inherently sequential

• Suppose 80X speedup from 100 processors. What
fraction of original program can be sequential?

a. 10%

b. 5%

c. 1%

d. <1%

Amdahl’s Law

 
enhanced

enhanced
enhanced

new

old
overall

Speedup

Fraction
 Fraction

1

ExTime

ExTime
 Speedup





1

Best you could ever hope to do:

 enhanced
maximum Fraction - 1

1
 Speedup 

  









enhanced

enhanced
enhancedoldnew Speedup

Fraction
Fraction ExTime ExTime 1

15

Challenges of Parallel Processing

1. Application parallelism  primarily via new
algorithms that have better parallel performance

2. Long remote latency impact  both by architect
and by the programmer

• For example, reduce frequency of remote accesses
either by
– Caching shared data (HW)
– Restructuring the data layout to make more accesses local

(SW)

16

Symmetric Shared-Memory
Architectures

• From multiple boards on a shared bus to multiple
processors inside a single chip

• Caches both

– Private data are used by a single processor

– Shared data are used by multiple processors

• Caching shared data
 reduces latency to shared data, memory bandwidth
for shared data, and interconnect bandwidth
 cache coherence problem

17

Example Cache Coherence Problem

– Processors see different values for u after event 3

– With write back caches, value written back to memory
depends on which cache flushes or writes back value
when

– Unacceptable for programming, and its frequent!

I/O devices

Memory

P 1

$ $ $

P 2 P 3

5

u = ?

4

u = ?

u :5
1

u :5

2

u :5

3

u = 7

18

Defining Coherent Memory System
1. Preserve Program Order: A read by processor P to location X

that follows a write by P to X, with no writes of X by another
processor occurring between the write and the read by P,
always returns the value written by P

2. Coherent view of memory: Read by a processor to location X
that follows a write by another processor to X returns the
written value if the read and write are sufficiently separated in
time and no other writes to X occur between the two accesses

3. Write serialization: 2 writes to same location by any 2
processors are seen in the same order by all processors

19

Basic Schemes for Enforcing Coherence

• Program on multiple processors will normally have
copies of the same data in several caches

• Rather than trying to avoid sharing in SW,
SMPs use a HW protocol to maintain coherent caches
– Migration and Replication key to performance of shared

data

• Migration - data can be moved to a local cache and
used there in a transparent fashion
– Reduces both latency to access shared data that is allocated

remotely and bandwidth demand on the shared memory

• Replication – for shared data being simultaneously
read, since caches make a copy of data in local cache
– Reduces both latency of access and contention for read

shared data

20

2 Classes of Cache Coherence Protocols

1. Directory based — Sharing status of a block of
physical memory is kept in just one location,
the directory

2. Snooping — Every cache with a copy of data
also has a copy of sharing status of block, but
no centralized state is kept
• All caches are accessible via some broadcast medium (a bus or switch)

• All cache controllers monitor or snoop on the medium to determine
whether or not they have a copy of a block that is requested on a bus

21

Snoopy Cache-Coherence Protocols

• Cache Controller “snoops” all transactions on
the shared medium (bus or switch)
– relevant transaction if for a block it contains
– take action to ensure coherence

• invalidate, update, or supply value

• Either get exclusive access before write via
write invalidate or update all copies on write

State

Address

Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

22

Locate up-to-date copy of data

• Write-through: get up-to-date copy from memory
– Write through simpler if enough memory BW

• Write-back harder
– Most recent copy can be in a cache

• Can use same snooping mechanism
1. Snoop every address placed on the bus
2. If a processor has dirty copy of requested cache block, it provides it

in response to a read request and aborts the memory access
– Complexity from retrieving cache block from a processor cache, which can take

longer than retrieving it from memory

• Write-back needs lower memory bandwidth
 Support larger numbers of faster processors
 Most multiprocessors use write-back

23

Example: Write-thru Invalidate

• Must invalidate before step 3

• Write update uses more broadcast medium BW
 all recent MPUs use write invalidate

I/O devices

Memory

P 1

$ $ $

P 2 P 3

5

u = ?

4

u = ?

u :5
1

u :5

2

u :5

3

u = 7

u = 7

24

Example Write Back
Snoopy Protocol

• Invalidation protocol, write-back cache
– Snoops every address on bus

– If it has a dirty copy of requested block, provides that block in response to the read request and
aborts the memory access

• Each memory block is in one state:
– Clean in all caches and up-to-date in memory (Shared)

– OR Dirty in exactly one cache (Exclusive)

– OR Not in any caches

• Each cache block is in one state (track these):
– Shared : block can be read

– OR Exclusive : cache has only copy, its writeable, and dirty

– OR Invalid : block contains no data (in uniprocessor cache too)

• Read misses: cause all caches to snoop bus

• Writes to clean blocks are treated as misses

25

Coherency Misses
1. True sharing misses arise from the

communication of data through the cache
coherence mechanism
• Invalidates due to 1st write to shared block
• Reads by another CPU of modified block in different

cache
• Miss would still occur if block size were 1 word

2. False sharing misses when a block is invalidated
because some word in the block, other than the
one being read, is written into
• Invalidation does not cause a new value to be

communicated, but only causes an extra cache miss
• Block is shared, but no word in block is actually

shared
  miss would not occur if block size were 1 word

26

Directories

• Every memory block has associated directory
information

– keeps track of copies of cached blocks and their states

– on a miss, find directory entry, look it up, and
communicate only with the nodes that have copies if
necessary

27

Synchronization

• Why Synchronize? Need to know when it is safe
for different processes to use shared data

• Issues for Synchronization:

– Uninterruptable instruction to fetch and update
memory (atomic operation);

– User level synchronization operation using this
primitive;

– For large scale MPs, synchronization can be a
bottleneck; techniques to reduce contention and
latency of synchronization

Multithreading on Multicore

• Basic idea: Processor resources are expensive and
should not be left idle

• Long memory latency to memory on cache miss?
• Hardware switches threads to bring in other

useful work while waiting for cache miss
• Cost of thread context switch must be much less

than cache miss latency
• Put in redundant hardware so don’t have to save

context on every thread switch:
– PC, Registers?

• Attractive for apps with abundant TLP

28

